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Abstract
The principal aim of this work is a comprehensive analysis of the phase diagram of water via
the van der Waals like equations of state (EoSs) which are considered as superpositions of
repulsive and attractive forces. We test more extensively the modified van der Waals EoS
(MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by
introducing instead of the classical van der Waals repulsive term a very accurate hard sphere
EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392).
It was detected that the simplest form of MVDW EoS displays a complex phase behavior,
including three critical points, and identifies four fluid phases (gas, low density liquid (LDL),
high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally
observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of
the density of water in the deeply supercooled region (a density minimum) is reproduced by the
MWDW EoS. An improvement of the repulsive part does not change the topological picture of
the phase behavior of water in the wide range of thermodynamic variables. The new parameters
set for second and third critical points are recognized by thorough analysis of experimental data
for the loci of thermodynamic response function extrema.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The attempts to discover in vivo more than two different
disordered equilibrium phases and their respective critical
points in one-component fluids is confronted by the lack
of reliable estimations of the state parameters where new
phenomena can be observed. Water is one vivid example
of a molecular system where quite different structures are
formed in vitro by computer simulation but needs experimental
verification. At the moment the complete phase diagram of
water is still missing and experimental proof of second and
third critical points is a subject of debate.

Experimental data about liquid–liquid phase transitions
published over the last decade have confirmed surprising be-
havior for a diversity of single-component systems such as
carbon [1, 2], phosphorous [3–5], triphenyl phosphite [6, 7],
silica [8], nitrogen [9], and water [10–14]. A great many
explanations of multicriticality in monocomponent fluids

1 Author to whom any correspondence should be addressed.

(perturbation theory models [15, 16], semiempirical mod-
els [17–20], lattice models [21–23], two-state models [24–26],
field theoretical models [27], two-order-parameter mod-
els [28–32], and parametric crossover models [33]) have been
disseminated following the pioneering work by Hemmer and
Stell [34]. Detailed discussions of different pro et contra ex-
ploratory scenarios of water behavior have been published in
the thorough reviews [35–37]. It should be noted that anoma-
lous behavior of thermodynamic variables and their derivatives
is not only the prerogative of water. Liquid helium isotopes
also exhibit non-conventional properties at very low temper-
ature (maximum density, the Pomeranchuk’s effect in liquid
He3, temperature decreasing under adiabatic compression, etc).
The main mechanism of unusual from daily experience but
thermodynamically correct behavior of different substances is
a competition of entropic measures among inherent clandestine
structures at given state parameters.

A fundamental contradiction associated with the imprac-
ticality to obtain a reliable prediction of thermodynamic and
phase behavior of substances from first principles and the
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necessity to introduce the computationally feasible simplifica-
tions is overcome in general by the parametrization of mod-
els and their consequent fitting to experimental data. Such
models offer the useful tools of aggregating large data sets,
allowing us to extend data beyond regions in which measure-
ments have been made, and providing insight into physical phe-
nomena. However, the transition from real phenomenon to its
model entails the appearance of uncertainty sources caused by
the statistical pattern of experimental information, inadequacy
and ambiguity of used models due to estimation of parameters
from experimental data, which are generated by different ex-
perimental units possessing as a rule different dimensions, dif-
ferent physical meaning, and different statistical distribution.
It results in a conflict situation when the set of parameters re-
stored according to one category of data does not correspond
to parameters from other data sources. Therefore, the conflict
appears in model parameter estimation and it is desirable to re-
duce an arising uncertainty by the simultaneous consideration
of all available data.

A first step in the quantitative description of real
phenomena is a selection of the model that can qualitatively
describe a variety of thermodynamic surface anomalies of
water over a wide range of temperatures and pressures. The
principal aim of this work is a comprehensive analysis of the
phase diagram of water via the van der Waals like equations
of state (EoSs) which are considered as a superposition of
repulsive and attractive forces. Here we test more extensively
the modified van der Waals EoS (MVDW) proposed in [20]
and refine this model by introducing instead of the classical
van der Waals repulsive term a very accurate hard sphere
EoS over the entire stable and metastable regions [38]. This
paper is structured as follows. In section 2 we review the
MVDW model proposed by Skibinsky et al [20] and take
into account the more exact hard sphere term from Liu’s
paper [38]. Section 3 displays the picture of the phase behavior
for different parameters of the MVDW model, and the third
critical point, which had no evidence earlier for this model, is
clearly established. It allows us to interpret four fluid phases
as gas, low density liquid (LDL), high density liquid (HDL),
and very high density liquid (VHDL). Moreover the anomalous
behavior of the density of water in the deeply supercooled
region (a density minimum) experimentally observed by
Mallamace et al [39] is reproduced by MWDW EoS. It is
demonstrated that improvement of the repulsive part does
not change a topological picture of the phase behavior of
water in the wide range of thermodynamic variables. In
section 4 analysis of experimental data both for the loci
of extrema of thermodynamic response functions and at an
intersection of isotherms in the metastable region as a result of
multiextrema density behavior allowed us to forecast the new
critical parameters for a second critical point.

2. Thermodynamic model

A mean field EoS is a major tool for the description of general
thermodynamic behavior in the existence domain of state
variables. The various physical approximations do not change
the topological structure of the thermodynamic surface which

is generated by mean field theories. For this reason the simplest
models of the van der Waals like EoS demonstrating the great
variety of features of thermodynamic and phase behavior for
mono and multicomponent fluids were chosen. The total
compressibility factor is expressed as the sum of repulsive and
attractive parts

Z = Z rep + Zattr. (1)

To compare very accurate and very rough approximations
for the repulsive term, the classical van der Waals expression

Z = 1

1 − 4η
(2)

and the wide range hard sphere EoS for stable and metastable
regions from [38]

Z rep = 1 +
12∑

i=1

ai+1η
i + c0η

1 − αη
+ c1η

40 + c2η
42 + c3η

44

(3)

are used.
Here Z = PV/NkT is the compressibility factor, and

P , the pressure, V , the total volume, T , the temperature, N ,
the total number of particles, k, the Boltzmann constant, η,
the packing fraction, defined as η = πρd3/6, ρ = N/V ,
the number density and d , the hard sphere diameter. The
coefficients ai (i = 1, 2, . . . , 12) and ci (i = 0 . . . 3) were
taken from [38] and reproduce the virial coefficients up to the
12th term. The most important parameter for the metastable
region is α = 1/0.635 584. The inverse value gives the
maximally random jammed packing and places a limit of EoS
applicability that is very close to the computer simulation result
η0 = 0.6418.

The attractive term has the same form as the classical van
der Waals EoS expression

Zattr = − Aη

NkT
(4)

where A is the interaction constant.
The conventional van der Waals approach where model

parameters d and A are the constants cannot describe more
than one first-order phase transition and one critical point.
Therefore a key question is a formulation of temperature–
density dependency for EoS parameters generating more than
one critical point in the monocomponent matter. There are
several approaches of the effective hard sphere determination
from spherical interaction potential models that have a region
of negative curvature in their repulsive core (the so-called core
softened potentials). To avoid the sophistication of EoS and
study a qualitative picture of phase behavior we adopt the
approach of Skibinsky et al [20] for a one-dimensional system
of particles interacting via pair potential

U(R) =

⎧
⎪⎨

⎪⎩

∞, R < dh

UR/UA, dh < R < ds

0, R > ds

(5)

where dh is a diameter associated with a hard core, ds is
a diameter associated with the impossibility of a particle
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Figure 1. The temperature (a) and density (b) dependence of the excluded volume for the model parameter set: dh = 2.27, UR = 2,
ds = 10.29. (a) B-curves correspond to isochores for γ = Bhρ from 0.01 (top) to 0.9 (bottom) with step 0.01, (b) B-curves correspond to
isotherms for τ = kT/UR from 0.01 (top) to 0.9 (bottom) with step 0.025.

to penetrate into the soft core at low densities and low
temperatures.

The algorithm excluded volume Bi(ρ, T ) = 2
3πd3

i , i =
h, s calculation is given in [38]. The behavior of the excluded
volume in the entire range of densities and temperatures is
illustrated in figure 1.

3. Phase diagrams

The opportunity to locate fluid–fluid phase transitions depends
on the concurrence between the repulsive and the attractive
parts of the EoS. In this paper we adduce the new features
of the mean field model EoS (1) for the simplest interaction
potential (5) to explain the anomalous behavior of the
thermodynamic surface of water. The binodal location at given
temperature, T , and pressure, P , is a solution of the set of
equations:

μ(ρ ′, T ) − μ(ρ ′′, T ) = 0

p(ρ ′, T ) − p(ρ ′′, T ) = 0
(6)

where ρ ′ and ρ ′′ are the densities of the coexisting phases,
the pressure, p, is calculated from the EoS described, the
expression for the chemical potential, μ, can be derived from
an EoS using standard thermodynamic relations. Spinodals are
determined via the following thermodynamic condition:

(
∂p

∂V

)

T

= 0. (7)

Figures 2–7 show the phase behavior for the van der
Waals EoS where diameter depends on state variables. The
appearance of a third critical point with repulsive term (2) was
detected which surprisingly broadens the possibilities of a very
simple EoS model. Water is known to have both low density
and high density amorphous phases, which can be transformed
from one to the other by changing pressure at low temperatures.

It therefore allows us to consider the liquid state as a mixture
of the two corresponding fluid phases, LDL and HDL. The
HDL has the local tetrahedrally coordinated hydrogen bonded
(HB) structure, whereas the LDL holds locally the ‘ice-like’
HB network. The availability of a third critical point at high
densities allows us to surmise that a near fivefold increase
of the gas–liquid critical density for water identifies the very
dense liquid phase (VHDL) discovered recently. Figure 5
illustrates a possible scenario of the isotherm behavior in
the P–T phase diagram for the core softened potential with
the third critical point in the metastable region. This result
confirms a suggestion that HDL is not stable but rather is
a highly metastable structure, relaxing to VHDL as glasses
generated with hyperquenched methods relax on slow heating
to glasses generated with conventional cooling rates [40].

An improvement of a classical repulsive expression (2) for
a one-dimensional system of hard spheres by the very accurate
presentation of the Liu EoS [38] (figure 7) does not change
the topological picture of the phase diagram in comparison
with the classical van der Waals expression. It seems that an
improvement of the repulsive term makes more soundness of
isotherm behavior near the second critical point. To analyze
a qualitative behavior of thermodynamic surface anomalies as
a whole the simpler model is preferable due to a topological
equivalence of the models under consideration.

4. Density anomalies and position of the second
critical point

There are different discordant scenarios of the second critical
point disclosure in the pressure–temperature diagram but
true parameters of singularity remain very vague. Figure 8
illustrates the scattering of values of the second critical point
position among different authors [33, 35, 41–47]. A most
reliable method of critical point estimation is based on the

3
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Figure 2. Evolution of isotherms in the P–ρ phase diagram for the core softened potential with three critical points: C1—gas + liquid,
C2—LDL + HDL, and C3—HDL + VHDL. Red curves (online) are coexistence curves; green curves (online) are spinodals. Critical point
location: πC1 = 0.832 × 10−3, τC1 = 0.0327, γC1 = 0.0678; πC2 = 0.1096, τC2 = 0.2297, γC2 = 0.2060; πC3 = 0.1799, τC3 = 0.1746,
γC3 = 0.6210. Model parameter set: A = 2.272, UR/UA = 2, Bs = 10.2898, Bs/Bh = 4.913.

Figure 3. Evolution of isotherms in the P–ρ phase diagram near gas + liquid critical point. C1—gas + liquid. Red lines (online) are
coexistence curves; green lines (online) are spinodals. Critical point location: πC1 = 0.832 × 10−3, τC1 = 0.0327, γC1 = 0.0678;
πC2 = 0.1096, τC2 = 0.2297, γC2 = 0.2060; πC3 = 0.1799, τC3 = 0.1746, γC3 = 0.6210. Model parameter set: A = 2.272, UR/UA = 2,
Bs = 10.2898, Bs/Bh = 4.913.

density fluctuation data analysis as a tool for quantitative
and direct identification of the inhomogenity from the
viewpoint of mesoscopic and macroscopic states. The density
fluctuations form a ridge which deviates slightly from the
critical isochore not so far from the critical point [49]. The
ridge corresponds to extrema for heat capacity, isothermal
compressibility, partial molar volumes, sound velocity, and
thermal conductivity (the so-called Widom lines). For
example, the intersection of maximum isobaric heat capacity
Cmax

P and maximum isothermal compressibility kmax
T lines in

the pressure–temperature phase diagram localizes the critical
point position quite accurately. The main problem of the
computer simulations of the thermodynamic behavior of water
is the very large discrepancies between experimental data and

calculations via the popular water model TIP5P [50]. To
illustrate quantitatively the existing discrepancies we have
compared in table 1 the simulation data from [51] and
‘experimental’ data calculated from the very accurate EoS
proposed by Pruß and Wagner (The IAPWS Formulation
1995 for the Thermodynamic Properties of Ordinary Water
Substance for General and Scientific Use) [48]. The
uncertainty in density of the IAPWS-95 EoS is 0.0001% at
1 atm in the liquid phase, and 0.001% at other liquid states
at pressures up to 10 MPa and temperatures to 423 K. The
uncertainties rise at higher temperatures and/or pressures, but
are generally less than 0.1% in density except at extreme
conditions. The uncertainty in isobaric heat capacity is 0.1%
in the liquid phase.
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Figure 4. Evolution of isochores in the P–T phase diagram for the core softened potential with three critical points: C1—gas + liquid,
C2—LDL + HDL, and C3—HDL + VHDL. Red lines (online) are coexistence curves. Critical point location: πC1 = 0.832 × 10−3,
τC1 = 0.0327, γC1 = 0.0678; πC2 = 0.1096, τC2 = 0.2297, γC2 = 0.2060; πC3 = 0.1799, τC3 = 0.1746, γC3 = 0.6210. Model parameter set:
A = 2.272, UR/UA = 2, Bs = 10.2898, Bs/Bh = 4.913.

Figure 5. Evolution of isotherms in the P–ρ phase diagram for the core softened potential with the third critical point in the metastable
region: C1—gas + liquid, C2—LDL + HDL, and C3—HDL + VHDL critical points. Red lines (online) are coexistence curves; green lines
(online) are spinodals. Critical point location: πC1 = 4.326 × 10−3, τC1 = 0.1168, γC1 = 0.0988; πC2 = 0.1434, τC2 = 0.3852, γC2 = 0.3177;
πC3 = 0.0755, τC3 = 0.2451, γC3 = 0.6815. Model parameter set: A = 6.962, UR/UA = 3, Bs = 7.0686, Bs/Bh = 3.375.

The uncertainty of computer simulation data correspond-
ing to the relative deviations (RD) mentioned from table 1 in
terms of temperature scale gives an estimation of the uncer-
tainty ∼40–50 K. In figure 8 we also show that the dependence
of the maximum of isobaric heat capacity from molecular dy-
namics (MD) simulations [52] has a similar shift compared to
calculations of the Widom line from the IAPWS-95 EoS [48]
at the same pressures and temperatures. To apply the computer
simulation results we need to rescale their values.

The van der Waals like models cannot predict correctly
the anomalous behavior of mechanical and thermal response
functions due to fundamental restrictions of the mean field
approximation. The divergence of the response functions in
the vicinity of the second critical point in water is essentially
weaker than near the liquid–vapor critical point where the
response functions diverge more strongly [44]. This fact
complicates the search for the second critical point both for
theoretical and experimental methods. The final conclusion

5
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Figure 6. Evolution of isochores in the P–T phase diagram for the core softened potential with the third critical point in metastable region:
C1—gas + liquid, C2—LDL + HDL, and C3—HDL + VHDL critical points. Red lines (online) are coexistence curves. Blue curves (online)
are isochores. Critical point location: πC1 = 4.326 × 10−3, τC1 = 0.1168, γC1 = 0.0988; πC2 = 0.1434, τC2 = 0.3852, γC2 = 0.3177;
πC3 = 0.0755, τC3 = 0.2451, γC3 = 0.6815. Model parameter set: A = 6.962, UR/UA = 3, Bs = 7.0686, Bs/Bh = 3.375.

Figure 7. Evolution of isotherms in the P–ρ phase diagram from the
core softened potential with three critical points. The filled circles
are the C1—gas + liquid critical point, the triangles correspond to
the C2—LDL + HDL second critical point, and squares are the
C3—HDL + VHDL critical point. Blue curves (online) are
isotherms according to the van der Waals EoS with Liu’s repulsive
term. Critical point location: πC1 = 1.5824 × 10−3, τC1 = 0.0416,
γC1 = 0.1059; πC2 = 0.0501, τC2 = 0.1597, γC2 = 0.3049;
πC3 = 0.1389, τC3 = 0.2708, γC3 = 0.6055. Red curves (online) are
isotherms according to the classical van der Waals model. Critical
data: πC1 = 8.3242 × 10−4, τC1 = 0.0327, γC1 = 0.0678;
πC2 = 0.1096, τC2 = 0.2297, γC2 = 0.2060; πC3 = 0.1799,
τC3 = 0.1746, γC3 = 0.6214. Model parameter set: A = 2.272,
UR/UA = 2, Bs = 10.2898, Bs/Bh = 4.913.

about the second critical point parameters in water should be
guided by experimental data but not the computer simulations
of ’water like’ models.

The very wide temperature range measurements of the
density of water by Mallamace et al [39] found out the
well defined minimum in the metastable supercooled phase at
203 ± 5 K (inset in figure 9), in agreement with computer
simulations and the van der Waals like models depicted in

Table 1. Vapor–liquid equilibrium data for TIP5P water obtained
from Gibbs ensemble Monte Carlo simulations [51] and calculated
with the IAPWS-95 formulation [48].

T (K) ρliquid (kg m−3) PMC (MPa) PIAPWS−95 (MPa) RD (%)

298.15 984 0.0116 0.003 17 266
325 964 0.0366 0.013 53 270
350 941 0.112 0.041 68 272
375 908 0.276 0.108 30 155
400 864 0.593 0.245 77 141
425 822 1.17 0.500 25 134
450 771 2.18 0.932 20 134
475 703 3.53 1.616 0 119
490 669 4.92 2.183 1 125

figure 5 (the expanded scale presented in figure 9). The
appearance of minimum and maximum densities at the isobar
leads to the intersection of the three isotherms at given density
in the P–ρ phase diagram (figure 9). This fact denotes the
possible appearance of the reverse LDL–HDL coexistence
curve relative to the position of the gas–LDL coexistence curve
(figure 10). The appearance of a density anomaly is also
confirmed in the computer simulation of a continuous soft core
attractive potential by Franzese [53].

To estimate the position of possible critical points in water
we have analyzed the behavior of the Widom lines in the wide
temperature range at different pressures on the basis of the
IAPWS-95 EoS. The well-known property of water to have
its isobaric heat capacity maximum in the vicinity of 37 ◦C
forms an uncomplicated extrapolation behavior of Cmax

P at high
pressures (figure 8). The other region where the appearance of
the Widom line exists is in the metastable part of the phase
diagram at low temperatures. The extrapolation of available
experimental data and qualitative rescaled results of computer
simulations demonstrated that the function Cmax

P is weakly
dependent on temperature and its definitional domain has a
sense in the pressure interval from 0 until ∼25 MPa. The
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Figure 8. The loci of extreme behavior of isothermal
compressibility, isobaric heat capacity, and thermodynamic
derivatives. The symbols from the right side of the melting line
(yellow triangles— ) correspond to the values Cmax

P ( ), kmin
T ( ),

( ∂ P
∂ρ

)max
T ( ), and thermal diffusivity ( ) calculated with the

IAPWS-95 formulation [48]. The symbols from the left side of the
melting line correspond to values Cmax

P ( ) from MD calculations for
the TIP5P interaction potential [49], the most credible theoretical
forecasts of the second critical point ( ). The hypothesized second
critical point from the present study ( )

Figure 9. Appearance of the density anomalies of water at low
temperatures and the intersection of the isotherms in the metastable
region. In the inset, the experimental data [39] and appearance of
three values of temperature with the same densities at the isobar
are shown.

weak divergence in the vicinity of the liquid–liquid critical
point suggests a slight difference among Cmax

P , kmax
T curves,

and the critical isochore. The intersection of these lines
defines a critical point with high accuracy. The Cmin

P , kmin
T

positions in the temperature range 250–320 K at pressures up
to 50 MPa practically coincide and the same picture is repeated
for the Cmax

P , kmax
T in the vicinity of the density minimum at

203 K. The largest values of the Cmax
P , kmax

T are observed when
P → 0. In contrast to the gas–liquid phase transition the
values of thermodynamic response functions diverge weakly
near the liquid–liquid critical point. This suggests that the
isochore behavior reconstructed from the data of Mallamace

Figure 10. The P–ρ phase diagram. C1 is the critical point of the
gas–LDL phase transition; C2 is the second critical point of the
LDL–HDL phase transition. Dashed line illustrates a melting curve
location.

Figure 11. Experimental and hypothetical isochores for water in low
temperature region. The densities are 1020 kg m−3 ( ), 1000 kg m−3

( ), 953 kg m−3 ( ), 941 kg m−3 ( ), 924 kg m−3 (the brown line)
was taken from [48]. The lines with the same colors correspond to
the continuation and interpolation of the densities mentioned. The
yellow color (online) is the melting curve. A schematic global
behavior of the isochore is given in the inset. The MDPS and MDPm

denote the maximum density points for stable and metastable phases,
respectively. The hypothesized reverse λ-line is sketched out by the
heavy line.

et al [39] and the IAPWS-95 EoS bears a strong resemblance
to the isochore behavior at the phase transition HeI–HeII in
the reverse scale of pressures. This assumption forecasts the
availability not only of the second critical point but also of
the λ-line for the liquid–liquid phase transition. The location
of this line is restricted by the temperature boundaries 203 ±
5 K within pressures range from negative pressures up to
25 MPa. The uncertainty of the λ-line position is practically
indistinguishable in comparison with the second critical point
predictions of different authors (figure 8). To confirm this
viewpoint experiments on the characterization of the λ-line
slope are required.

A similar analysis of the Widom line data can be applied
to an estimation of the third critical point. From figure 8
it is possible to establish a tendency in the behavior of the
Cmax

P curve at high pressures. The continuation of the Cmax
P

line lies in the temperature range 313–320 K for P >

400 MPa (figure 8). The search for the desired intersection
for the Widom lines Cmax

P and kmax
T is impossible for the

7
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temperature range of interest because the maximum isothermal
compressibility appears only at T > TC1. To find the Widom
line intersection we have used instead of the kmax

T line the
critical isochore. For the determination of the critical isochore
we carried out a search of such isochores where ‘the initial
docking contact’ of the isochores in metastable states along a
melting line (figure 11) with the Cmax

P line looks like a peak.
The minimum value of the density, where the most distinct
point of beak-generating contact is observed, was characterized
by the next parameter set that one can identify as the third
critical point (TC3 ≈ 320 K, ρC3 ≈ 1315 kg m−3, PC3 ≈
2000 MPa). This result corresponds to the parameters of state
observed for the HDL and VHDL phases [54] and confirms
the qualitative forecast of the van der Waals like EoS for the
locations of the critical points in the P–T phase diagram.
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